
Section 3-Lecture 10

Introduction
 Introduction to Inheritance, Base Classes And Derived

Classes, Protected Members, Casting

 Base- Class Pointers to Derived- Class Pointers, Using
Member Functions, Overriding Base –

 Class Members in a Derived Class, Public, Protected and
Private Inheritance.

.

Inheritance Concept

Point

Circle 3D-Point

class Point{

 protected:

 int x, y;

 public:

 void set (int a, int b);

};

class Circle : public Point{

 private:

 double r;

};

class 3D-Point: public Point{

 private:

 int z;

};

x

y

x

y

r

x

y

z

 Introduction
 Inheritance

 Single Inheritance
 Class inherits from one base class

-- Multiple Inheritance

 Class inherits from multiple base classes

 Three types of inheritance:

 public: Derived objects are accessible by the base class
objects (focus of this chapter)

 private: Derived objects are inaccessible by the base class

 protected: Derived classes and friends can access
protected members of the base class

 single Inheritance
class Shape {
 double x, y; // Base coordinates of shape
public:
 void translate(double dx, double dy) {
 x += dx; y += dy;
 }
};

class Line : public Shape {
void translate(double dx, double dy) {
 x += dx; y += dy;
 }

};

Line l;
l.translate(1,3); // Invoke Shape::translate()

Line inherits both the

representation and

member functions of

the Shape class

Access Control Over the Members

 Two levels of access control over
class members

 class definition

 inheritance type

base class/ superclass/

parent class

derived class/ subclass/

child class

d
e
ri
v
e
 f

ro
m

m
e
m

b
e
rs

 g
o
e
s
 t
o

class Point{

 protected: int x, y;

 public: void set(int a, int b);

};

class Circle : public Point{

 … …

};

Controlling Inheritance
Inheritance Type Base class member

access
Derived class
member access

 public public

public protected protected

 private inaccessible

 public protected

protected protected protected

 private inaccessible

 public private

private protected private

 private inaccessible

Inheritance Type Base class member
access

Derived class
member access

 public public

public protected protected

 private inaccessible

 public protected

protected protected protected

 private inaccessible

 public private

private protected private

 private inaccessible

Ambiguity resolution in Inheritance(multiple inheritance)

Class M class P:public M,public N

{ {

Public: public:

 void display(void) void display(void)

{ cout<<“class M”; } {

}; M::display();

Class N }

{ };

Public: int main()

Void display(void) {

{ cout<<“class N”;} P p;

}; p.display();

 }

Ambiguity resolution in Inheritance (single inheritance)

Class A

{

Public:

 void display(void)

{ cout<<“class A”; }

};

Class B:public A

{

Public: void main()

Void display(void) {

{ cout<<“class B”;} B b;

}; b.display();

 b.A::display()
 //invokes display in A

 }

Virtual base class

Grand Parent

Parent 1

Child

Parent 2

Virtual Inheritance

A

B C

D

class A
{
 public:
 int a;
};

class B : public virtual A
{
 public:
 int b;
};

class C : public virtual A
{
 public:
 int c;
};

class D : public B, public C
{
 public:
 int d;
};

• Multiple copy of same base
class sub-object eliminated

Virtual base class

Class A

{ ….}; //grandparent

Class B1: virtual public A //parent1

{…..};

Class B2: virtual public A //parent2

{…..};

Class C: public B1,public B2 //child

{…..}; //only one copy of A
 will be inherited

